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DETERMINATION OF AUODAMIM C OOEFFICISNTS USING ACCELMROCETR RECORDS
FROM A PLAN YAWING BOMB

ABSTRACT

The presently used Gavre drag functions are not well suited to
the streamlined bombs dropped from high speed, high altitude airplanes.
One method of obtaining better drag functions is from accelerometers
mounted inside the bombs,, This report develops a method of reducing
such accelerometer data and applying existing exterior ballistics
theories to obtain not only KD, but KL, KS , K and spin as well.

Five bombs equipped with accelerometers were dropped at White Sands
Proving Ground, New Mexico during February and March 1952. Although
the results were not too satisfactory they indicate the method is
accurate and practical if the following can be obtained: (a) an
electrical system giving a mooth record of accelerations with known
ilits of error, (b) accelerometers of two different ranges for small

relative errors in drag, (c) accurate meteorological data near the time
of drop.

3



LIST OF FIGURES

NO. TITLE

1. Accelerometer curves, Drop 2

2. Accelerometer curves, Drop 3
3. KD vs Mach number; 3,000 lb. bombs, T

4. KD vs Mach numberl 10,000 lb. bombs T56

5. Ca vs t and Sn vs t; Drop 2

6. 'pvs t; Drop 2

7. 'fvs t; Drop 3

8. 9 vs t; Drop 2

9. 4P vs t; Drop 3

10. Sketch of bomb showing accelerometers



INTRODUCTION

In recent years higher airplane speeds and altitudes have resulted
in bomb speeds greater than that of sound over an appreciable part of
the trajectory. To ensure good flight at such speeds, bombs have been
made more streamlined, with longer tails and fins chosen for aerodyna-
mic qualtities. The drag coefficients of such bombs are not well repre-
sented by the coefficient corresponding to the Gavre drag function; the
new bombs have less drag in the subsonic region and a steeper rise at
the critical Mach number, which gives larger drags. The result is that
the Bomb Ballistic Reduction Tables, based on the (avre drag function,
can only be applied to the new bombs by violent means. It is necessary
to have different ballistic coefficients for range and time of flight,
and to vary them with launching conditions.

The fast electronic computing machines nov available make the
computation of a bombing table from a given drag function rather simple.
It then appears Aesirable to compute the table for each bomb directly,
using its own drag function.

Three methods of getting the necessary aerodynamic information are
availablei Wind tunnel tests, spark range firings, and drops of bombs.
Unfortunately, drag measurements at supersonic speeds are hard to make
in a tunnel, and of lover accuracy than seems desirable. Also, wind
tunnel and spark range tests must have Reynolds numbers far from those
of actual flight, because small models must be used; and the effect of
different Reynolds numbers (Uscale effects) is not well understood. Drops
of full-scale models, properly instrumented, seem to offer these advantages:
(1) data are obtained from duplicates of the actual bomb, (even the
surface finish, for example, is the same) dropped under tactical con-
ditions; (2) measurements of drag, lift, moment and damping rate can be
obtained from the same drop; (3) data for the construction of a bombing
table should be obtainable from a small mmber of drops, without ex-
tensive range bombings; (4) the behaviour of the actual bomb under all
expected conditions of flight can be examined directly, which gives a
satisfaction that calculations from models do not provide.

It was accordingly decided to drop demolition bombs of the new
family, T-54, T-55, and T-56, at White Sands Proving Ground.

A sketch of the bomb showing approximate locations and positions
of the accelerometers is shown in Fig. 10.
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Dessription of the aparatus. At the center of gravity" of each bomb
were placed three accelerometers*' The first was placed along the axis
of symmetry, and indicated axial drag accelerations from zero to 2g.
Its output went on Channel 1 of the telemptering apparatus. The second
and third accelerometers were on the axil at right angles to the first
and to each other, to measure accelerations normal to the axis* Their
outputs went on Channels 2 and 3- Approximately eighteen inches behind
the c.g., and on the axis, were two more accelerometers on Channels 4
and 5, parallel respectively to the second and third. As far back as
they could be conveniently located in the tail (h ft. from the c.g. in
the text) were two more accelerometers on the axis, respectively parallel
to the second and third, using Channels 6 and 7. The fourth and fifth
accelerometers were carried as insurance. Estimates indicated that if
undesirably large yaws developed near the speed of sound, the rearward
accelerometers might be overloaded. The fourth and fifth were put in to
measure such yaws, but none was observed. All accelerometers but the
first had the range -lg to +1g. The first five accelerometers, the
telemetering apparatus, the power supplies, and a Spheredop apparatus
for position-time data were mounted on a steel tray which could be slid
into the inert loaded bomb before the tail was mounted.

Ground eqaipment included ballistic cameras to get position and
velocity at launch; Askania theodolites for position-time data during
flight, in case the Spheredop didn't work well; Bowen-Knapp cameras
to cover the last thousand feet of the trajectory, to give the Sphere-
dop data a well-determined origin; telemetry receiving stations; radar
tracking ecpipment; and weather balloons.

The telemetering and Spheredop apparatus were designed, installed,
and tested by the Ballistic Measurements Laboratory of BRL; the ground
eqiipuent was operated by the Flight Determination Laboratory of WSPG;
the meteorological data were furnished by the AAF weather station at
WSPG. The airplane and crew were assigned by the Aberdeen Bombing
Mission at Edwards AFB from the machines and crews stationed there by •
the AAF for bombing tests. The telemetering records were read by the
Flight Determination Laboratory, and the Spheredop data were reduced by
the Ballistic Measurements Laboratory.

Accelerometer records. Each accelerometer put out a voltage be-
tween 0 and 5 volts, linear in the acceleration affecting it. For drag,
the output was sero for zero acceleration; for the other accelerometers
the output was 2,5 volts at zero. The output controlle4 the pulse width
in a pulse width frecpuency modulation telemetering circuit. Each
accelerometer reading was sampled about 20 times per second. (The
speed of the ceumutater varied somewhat.) The ground station shewed the

1. The actual size of the accelprometers, and the small variations of
position of c g. from bomb, t4 ba; mai tkue O ey~ ately
correct. No appreciable error was introduced by this approximation.
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output of each acoelerameter as the length of a line en an oscilloscope.
The oscilloscope was photographed by a moving picture cmera. Since the
telemtering apparatus had thirteen channels, six were used to send
reference voltages of 0, 1, 2, 3, 4, 5 volts. (A temperature indicator
wan used instead of 3 volts an same drops.)

The film was read by a Herograph, which measured the length of each
line by means of a photoelectric cell and marked a corresponding point
on paper. The Hermograph adjusted itself autoautically to the zero
reference voltage line, and manual control was used to try to fit another
reference voltage, 4 or 5 volts.

A section of film was read at BRL, using an ordinary reader and
interpolating between the nearest two reference voltages, instead of be-
tween 0 and 4 or 5 volts. The resulting record was smoothed; but in
view of the methods to be used in determining the aerodynamic coeffic-
ients, the labor of reading all the film did not seem worth while.

Conduct of the tests. Because of various delays, conflict with other
progrms arose, and only five bombs were dropped. The available air-
plane, a B-29, could not attain the desired speed and altitude. The
bomb was slung below the aircraft, from which the bomb bay doors had
been removed, so that most of the bomb was outside the bay. (Two
3000 lb. T-55 bombs were carried at once.) The slings were designed to
release the bomb with practically no ssturbance in yaw or spin. It
was not possible to cock the nose up, as this would have brought the
tail too close to the runway. For an initial yaw, the angle of attack
of the airplane and the curved airstream near the fuselage were depended
on. The accelerometers normal to the axis pointed down at about 40
from the vertical. The instruments in the bomb were connected to the
airplane's power supply through a pull-out plug.

Since the airfield at WSPG was mall, it was necessary to fly froa
Idwards Air Force Base. After take-off, the airplane flew over the
instrument building and the accelerometers (except the first) were read
to be sure they indicated about lg co 450. The airplane then flo to
WSPG, reporting its arrival over Albugierqte. (From Albuquerque to WSPG
the course was approximately the desired bombing course.) As the air-
plane approached WSPG its course was plotted on the radar plotting
board and it war talked on to the desired line of flight. The bombardier
picked up his target, a specially prepared circle 200 ft. in diameter.
The airplane than made a large circle, giving time for the Instraments
in the bomb to be checked by the ground stations. About two minutes
before the drop the instruments were connected to the bomb's internal
power supply and their operation checked again. Last minute corrections
to the line of flight were made as the airplane approached its straight
bombing run, and the release of the bomb was controlled by the bombardier
with a standard optical eight.

1. As suggested by 1. S. iartin, of &RL.
2. After Drop No. 3, of a 3000 lb. bomb, am engine failed, and the

second bomb of the pair was dropped with only three engines working.
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Reamarks. The results of the experiment as shown in Soction 4 were
disapointing. Nevertheless, these tests did have a ambar of useful
results. First, it was shown that the T-55 and T-56 bombs flew well,
developing no objectionable yaws at speeds near that of ound. Secend,
the Spheredop apparatus gave good position tine data. Third, methods
of analysing the data were developed which, judging fro the results of
these drops, will give quite accurate values of the aerodynamic coeffi-
cients if smooth data can be obtained.

1. METHO AND THEORY

In this section, we derive the equations frm which several of the
aerodynamic coefficients and the spin can be determined. The coeffi-
cients corresponding to the drag D, lift L, normal force N, restoring
moment M, and damping moment H will be defined by the following
equations:

(1.1) D n L pd2u2,

(1.2) L 2

(1.3) N 0 Kd 2 U2 8

(1.I4) M - -Kopd u28

(1-5) H - -K1~d~~w.

where p is the density of the air in lbs./ft. 3 , d is the diameter of the
bomb in ft., u is the air speed of the bomb in ft./sec., 8 is the angle
of yaw in radians, and w the angular valocity of the longitudinal axis
of the bomb in rad./sec.

Because the bombs had uncanted fins and were suspended nearly
horizontally, being released with negligible angular velocity, we shall
make

Assusption 1. The spin rate is sall.

A tio 2. The yaw is mall and nearly planar.

The first of these is borne out by the data and the second is a conse-
"Wunce of th first. Furthermore, assum;tion 2 justifies making

Assmmtion 3. The axial drag DA reprsents the total drag within the
accuracy i the experiment.

This assumption is borne out by calculations from the data.



Now - which together with (1.1) and aumption 3 give

(1.6) lD - =1/ l 2

where m is the mass of the projectile in pounds and a is the aeolera-
tion as recorded on channel J, J - 1, 2, ... , 7.

TA Section 3 it will be shown using the results of McShane Elj
under assumptions 1, 2, 7, 8 that the differential equation of yaw 8 is

(1.7) 8" + 2(a+ u,/2u)6 + P6 o

and the yaw is given closely by
(1.8) 8 O W eU(ce :  - )

where

(1-9) a M (pd 2( + kr)
(1.9) P - (/d/2mk2

and primes indicate derivatives with respect to arclength a along the
trajectory, u - u0 when a - 0, c and T are complex conjugat ~stants,

i ti, B is the transverse moment of inertia, and k - "VB$/d', the
radius of gyration in calibers.

let 6, 62 denote the two complex teru of 8 in (1.8) and $V,, 92
the arguments of 8, 82 respectively. Then

(1.11) 8 - + 2

(1.12) T 2  -

where y is the argment of c. The yaw is shown below in the complex
plane.
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From equations (1.12),

(1.13) '1- T2 291, 2 " "

8 is zero whenever 1 - x/2 + np for p an integer. Let X/2 be the are
length between successive zercof 6 and call X the wave length. Using (1.12)

(s + )2) + y) - (Ps + y) - n

or

(1I4) Px - 2n.

Substituting (1.1 4 ) into (1.10) yields

(1.15) KM - V/ u2 2/=Apd

We shall call the points midway in arclength between zeros of 8
the "midarcpoints" between zeros of 6. The points where V 1 a 0,

R, 2;s ... are such points. At the midarcpoints between zeros of 8,
we have 82 - 8.

In terms of time derivatives (1.7) becomes

(1.16) " + 2ag + P2u2 8 - 0.

Fran (1.8), (1.11) we obtain

(1.17) * -(a + u,/2u)uO + lpu(81 - 82)
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and at the nidaropeints between sores of 6,

ad - -2a(a + u,/2u)u8

which we compare with p2 u28 in (l16). For the T55 pad T56 bombs with
airspeed 500 ft./c. we obtained

2i.8 -48,

9 u2 8 -, 2.58,

8 -w -2.58 o -5 8 •

In general we can make the

Asauptien 4. At the sidaropoints between sores of 8, 6 can be neglected
In k1.16).

At the seros of 8, 82 - -81 and (1.16), (1.17) yield

48 - -2d ,

S- 2 i8 1

or

8 - -4a~u81

For the T55 and T56 bombs with airspeed 500 ft./sec. we obtained1

8 -21 10"351.

In general we can make the

Amstw en 5. The seros of 8 and 8 coincide within the error measure-
mere%,

Using assmptions 4 and 5 we can make the

J&M tio 6.At the niiiaroits of the soeos Of 8 can be neglected

Using asmmption 6 we have

athe midarpoints between sores of b.
1 For the values of the ingredients in this estimate see the discussionof Assumption 8 in Section 3.
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Define the resultAnt r of the transverse accelerations (at the rear-
ward accelerometers) due to yawing motion by

(1.19) r a k2 + a .

Because accelerations a2 aod a3 act through the center ef gravity the

second term on the right in (1.19) eliminates the effect of lift upon
the transverse accelerations. If acceleroeters 6 and 7 are at a dis-
tance1 h from the center of gravity,

(1.20) r - h 181

Equations (1.8), (1.18), (1.20) combine to give

r - : /2u3/2e-a8 I ceips + iI

Let C be such a positive number that

(1.21) r - c e-"

for the midarcpoints between the zeros of 8 or between the minima of r.
Equation (1.21) will be used to determine a.

Now INI - m a which together with (1.3) yields

(1,22) KN -m, + a /pd2u2l8l

Assumption I together with (1.1), (1.2) and (1.3) yield the Mal
formula

(1.23) KL : K-KD.

We can now determine 1H by solving (1.9)

(1.24) 1H- (-K +. 2ma/pd2 )k2

7his analysis should be slightly modified if the bomb spins slowly,
but the position and size of the maxima and minima of r will not be
affected within the errors of meaurement.

1 Accelerometers 6 and 7 may be replaced by 4 and 5 in (1.19) and i,
the definition of h.
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To dtermine the axial spin choose nos-rotating reference axes so
that the transverse acceleration (at accelercmeters 6, 7) in parallel to
the axis of the abissa. Let a be the sipned magnitude of this trana-
verse acoleration'.

7

.S pPaitve.abacissa

46

Let 6, 7 be such orthogonal axes that a6 , a7 are the components of the
above acceleration in directions 6, 7 respectively. Let f' be the angle
from the positive abcissa axis to axis 6. Then

(1.25)

ad

(1.26) a2. s6  +a.

Let

(1.27)

where the ap is chosen as that of a. For the latter purpose ve must

keep track of the ainima of a2 (they were practically zero) which shouldbe the sam as the zeros of L

1 The you was practically plans in the part of the trajectory oon-
sidered.
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Combining (1.25) and (1.26) we obt n

(1:28) {i~ -@~f Cn

or"

. (N"=arc coo Co
-arc sin Sn

In order to specify uniquely the terms arocos Co and arcsin Sn of (1.29)
we specify an initial %V,, require *be continuous, and at extrma of Co,
Sn use Sn, Ca respectively to determine whether f is increasing or de-
creasing.

The rate of spin is given by fi

2. CO!PUTATIONAL AND FITTING PROCEDUreS

Required data. To determine the aerodynamic coefficients and spin of a
bobusing the equations of Section 1, it is necessary to have avail-
able the physical data of the bomb (moments of inertia, mass, caliber),
meteorological data (wind velocity and air density and temperature vs
altitude), trajectory data (altitude and velocity vs time), and the
readings of the accelerometers vs time. The air speed u can be obtained
by correcting the velocity of the bomb with respect to the ground by the
wind velocity. For the trajectory referred to air, the arclength, a,
as a function of time, t, can be obtained by integrating the airspeed u
with respect to t.

D=PW rate and aeod mic coefficients. The drag coefficient can be
obtained by substitution in (1.6).

Equation (1.19) and the readings of the accelerometers can be used
to determine the r vs t function. The r vs a function can then be
plotted and the values of s for the minima of r (corresponding to seros
of 8 and 9) Jan bj measured In accord with assuption 5 the measured
arclengths 1' 72P 000' Jn+1 from a convenient origin to the minima
of r will be used to obtain fitted values S, S2 9.6, S nl which differ

by a uniform interval )/2. The least square fit to the measured inter-
vals is given by

(2.1) /2

Now P and % can be determined using (2.1) in (1.14) and (1.15),

respectively. Setting

(2.2) Si S, + (i- 1)X2

for i - 1.2, ..., n+l

14



we determine S, to that

" - (Ji" s-

is a minimm which yields

(2.3) S, + 1)1

For i - 12 2, ... , n, let1

(2.4). i a (Si + Si+i)/9
From the plot of the r vs s function the valuesA/ 1 , A22 "e" A. at

*1 '2' ***P an (the midarepoints between the xeros of 8) can be

measured.2

Let a., for ii, - 1, 2, ... , n-be such a real mber that

(2.5) A

where u1 ., u2 , .. o, un are the values of u for a,, 82 o1., on' If

equation (1.21) were satisfied for s w Si, r -eiA. for i - 1, 2, ... , n,

then i would be the same for i,j - 1, 2, *.., n. Since the data con-

tain errors, (2.5) is solved for

(2.6) aij a- [log(r 3 /r 1 ) - (3/2)log(u /u)]/(Nj - ad

and the least square value a is given by

(2.7) nn2 J-S1 1 =t,1

1 If the data are not reliable on all channels, it may be desirable to

use the above procedure with one channel, say a6 , in place of r for

the determination of )/2 and a1, s2' 9 .n., provided that the spEin-

of the bomb introduces no new seros in a6 .

2 An approximate method of making a sero-level correction on individual
channels is given in the appendix.
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Using (1.21) the least sqcare value for C is given by

(2.8) C. ev (as,)j5)ei-i

Fitted values rl, r2 , ... , rn of the resultant acceleration due to yaw

can then be obtained by substituting into (1.21).

(2.9) r - C* exp (-as,)

For each i, i n 1, 2, ... , n, use ri, (1.20), (1.18), (1.22) to obtain

a corresponding value of , 8 and K.. A least square value of K1 can

then be obtained by averaging the values of KN for i - 1, 2, ... , n.

Now use (1.23) and (1.24) to obta and 

. Using (1.27) we can cmpute the Cs vs t and Sn vs t functions.
I rions (1.28) ensure that Cs and Sn are estimates of con W and
inW , 7he variances of Cs and Sn becme large at seres of a. Draw

smooth curves through the plots Cs vs t and Sn vs t taking into account
the above property of the variances. (See Ficare 5.) Henceforth we
use these smoothed values of Cs and Sn. Equations (1.29) provide us
with two estimates of f.

Let Vc, Vs be the variances of W as estimated by arccos Cs,
arcein Sn respectively. If these estimates were independent the best
(least variance, linear combination) estimate of %P would be

- (arccos CzQjc + (arci Sn)/vsI' l /Vs

Further if Cs and Sn had equal variances, Vc, Vs would be approdmately

proportional to 1/sin 2 , 1/cos 2 . respectively. In axV case a very
good estimate of %p is given by

(2.10) - Sn,(arccos C )+ C e2 (arcin Sn)

The rate of spin can now be obtained by differentiating mmerically.

16



I

3.1 TO (CO 2U AND D(KB L SWAT= FOR 2  Am

7he differential equation for the plans yain of a bomb is derived
by Mohn as equation 46 of E33. Let 0 be the slope of the traectory
ina •vertical plans and g be the acceleration of gravity. Then the aboe
equation is

+ (pOg/mk2)(K, . k2KD)cos B - (2g 2 )sIn 9 coo. o a 0.

Changing to arclength derivatives and using (1.9) and (1.10) this equa-
tion becomes

(3.2) 8" + (2& + u'/u)8' + p2 8 + (9,4)co, S

- (292/u)s.n S co. 9 - 0

Using the notation of McShane we let 24, Q, 92 be the coefficients of
8, 8, 1 of (3.2) and write (3.2) as

(3.3) 6,, + 2Q,1  + 2 8 + . -

The complete solution of (3.3) as given by (7.1) of EI] is (where
o is a bound variable replacing s and cl., c2 are cauplex constants)

a

(3.4) 8(s) - 8(r) (a) + c exp[f Q(a)d* +.V(0]

0

+402 xPf[f Q(o(c)da - i 4 9:(a)
0

subject to the conditions that

(3.6) ," -o.

The second and third teras of (34,4) are solutions of the homogeneous
equation corresponding to (3.3) and the first term is a non-oscillatory
particlar solution of (3.3)- The latter term is called the yaw of
repose and is given by (5,1) of [31.

17



(3.7) (r)  (2g 2/P2u4)sin 0 con 0 - (sg/p2u2 )oo , 0.

Tor the beginning of the trajectory for the 755 and T56 bombs 8(r) did
not exceed 5 x 3  radiausi In general we will make the

Asmmption 7. The yaw of repose can be neglected in (3.4) and (3.2).

With this assumption (3e2) becomes

(1.7) 8" + 2(a + u'/2u)8' p28 a 0

Substituting In the values of Qi, Q2 into (3.5) we find

(3.8) I,. - aut/u - (u'/2u)2 -u"/2u

Now

u* Vu2J _ ui2/u,3

For the T5 and T56 bombs the following approximate values were obtained:

- 500 ft./sec. 2- O'b7/ft. 2

- 12 ft./sec. 2  2 Mo-5 /ft .2

- 1.5 ft./se a ut/u - 4x 1o8/f. 2

u' - 2 x 102/aec. (u'/2u)2 . 4 x lo'lO/ft°2

u" = 6 x 30-/ft. sec. u"/2u - 6 x -9 /ft.2

In general we can make the following

AB!Mtin 8. 2, su'/u, (ut/2u)2 , u"/2u can be neglected in comparison

with P In (3.8).

Using this assumption (3.5) becomes

(3.9) ( t u

and (3.6) is satisfied. Integating (3.9) we obtain

(3.10) + , "p

1 For the values of the ingredients in this estimate see the discussion of

AsuIption 8 in Section 3. 18



d

where is a real constant. Further

(3.21) exp f0 QA(a)da =-Vu-;76 a "

We can take our reference frame so that the yaw 8 is real. Then a,,, 02
of (3.) are complex conjugates. vsing (3.10), (3.11) and assmptin
7 equation (3 4 ) becomes

(1.8) 8 = 1/i e'(ce15 e"

where c and f are complex conjugates and c - cl exp if, T o2exp(-iy).

4. RZWLTS AND C CLSIOS

As remarked in the Introduction, the experiment was not altogether
saccesful, for the aerodynamic coefficients obtained by the methods
discussed In Sections 1 and 2 are for the most part of doubtful accuracy.

Two reasons for the poor results can be attributed directly to the
electrical equipment used. First, it was necessary to measure drag from
accelerometers of greater range (and consequently of less accuracy at
lower speeds) than had been planned. Second, the transverse accelero-
moters showed rapid and spectacular fluctuations (cf. Figures 1 and 2),
which made the analysis difficult and introduced larp relative errew
into the coputations.

Because the yawn were small, and damped out fairly quickly, the
aerodynamic coefficients (except %) and the spin were composed only for

the first part of the trajectory, at a Mach number of about 0.6.

The following discussion of the data for each drop is given to
illustrate the difficulties in analysis mentioned in the preceding para-
graph, how som of the difficulties were overcome, and their effect
upon subsegient coaputations.

Do The accelerometer corresponding to Channel 1 did not function
so the most important data were missing. No attempt was made to

reduce the data from other channels.

p. The data sust be considered as no better than fair. Although
C 6 dis aed fairly well defined extrema and seros, Channel 7
(see Figure 2) fluctuated up and down widly, rendering the data useless.
Instead, Channels 4 and 5 were used. These channels gave much better
curves, but the smal amplitudes decreased the relative accuracy of the
readings. Channels 2 and 3 presented fairly good curves.
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". LBecause Channel 7 did not function, the data are useloss for

ons other tan KD, K and X. Channel 6 was fair; from it alone
X was determined and KM was computed. An attempt to use Channelos and

5 in place of Channels 6 and 7 produced meaningless results.

Dp2. On the whole, the data are very good. Channel 7 has some wild
1Jations downward, but if these fluctuations are considered as error
and ignored, the curve has well defined extrema and zeros. The other
channels are very good.

Drop5. The data are only fairly good. Channel 6 is good, but Channel
1asvery wild downward fluctuations - more than Channel 7 of Drop 2.
The upper envelope of Channel 7 seemed to be in phase with Channel 6 and
this envelope was used to determine r. Use of this envelope, however,
makes it impossible to estimate the error in Channel 7. Thus there are
unknown errors in KN, KL, and KH introduced through unknown errors in r
and 4. Channel 3 is very good. Channel 2 has wild downward fluctuations,
but again the upper envelope was used.

Figures 3 and 4 show the computed values of FD vs Mach number for
the T5 and T56 bombs respectively. The solid curve of each figure is
one probable "D curve defined by the data, faired in by eye. The
broken curves of Figures 3 and 4 represent the error in KD due to an

error of 0.02 units of gravity which is the probable maximum error in
the smoothed a1 vs t curves, It was assumed that the zero level, after
correction, is within 0.Olg of the true zero and that the curve drawn
represents the acceleration (uncorrected for zero level) within 0.01g.
An appreciable error in D could result from an error in p. In sone
cases the meteorological data were not taken until several hours after
the drop. Thus, no utisfactory estimate of the error In p can be ade.
If the determination of u were in error by 10 ft./sec., at 500 ft./sec.
this would introduce into KD an error of only 4%, a small fraction of
the error introduced by an error in al, As us increases, this error

becomes rapidly less important, and hence KD is relatively unaffected
by errors in u.

Using the curves of KD in Figures 3 and 4, Mr. 3. S. Martin, of
these laboratories, has kindly computed the trajectories of a auber of
bombs which were dropped in the range bombing work at Edwards AFB. Thus
the range and time of flight could be compared with the observed values.
It appears that the values near a Mach number of 1.1 are probably too
low for both the 3,000 lb. T55 and 30,000 lb. T56 bombs.
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The computed values of K3, K3, h a IN for each drop are gixe In
Table 1. Altheugh it was impossible to estimate the erers ix these
oefoicimnta a few general remarks cm be made. The accurao- of KM is

poor because a2 and a3 awe small. lon though In general these eoeffi-
cents as given in Table 1 are no better than an idication of the order
of magaitude, these for Drop 2 are probably of useful accuracy.

The angle of rotation y and the rate of spin+' for Drops 2 and 3
are shown in Figures 6 through 9, the optical and Doppler values of %F
(adjusted for phase differences) being shown for comparison. The bomb
of Drop 5 displayed no discernible rotation. The spin rate 8 seconds
after release is given in Table 1.

Table 1

Drop No. 3 4 2 5

BombType T55 T55 T56 6

Serial No. 6164 6169 6n6 6132

Date Dropped 4 Mar 52 4 Mar 52 25 Feb 52 5 Mar 52

m (lbs.) 2965.5 2989.5 10932 10900

d (ft.) 2 2 3,833 3.833

B (lb.-ft. 2) 23083 22229 99097 101947

h (ft.) 1.55 5.57 5.57
a .000296 1 .000229 .000338

P .00499 1 .0o416 .00397
k/2 (ft.) 630 744 756 791

KD (Mach .6) .0845 .0845 .0495 .0495

KM 2.70 1.72 1.23 1114

0.71 1 1.51 3.20
0.63 1 1.46 3.15

K3  30.9_1 7.6 10.7
after 8 see) 1.11 .175 0(rad./soc.) --

1 Channel 7 did not function.
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CMarison with Cornell data. For purposes of comparison, an and
were computed from Cornell Aeronautical Laboratory E2 . The Corell
report gave graphs of CM and C. v 6 (here a i the angle of attack in
degrees) for the standard 3,000 and 10,000 lb. bombs. Now C and I are
related by

N --(180/8)(do /da)o

where the subscript zero indicates that the derivative is evaluated for

zero degrees angle of attack. If C and C. are defined as least-

squares cubic equations in 4, the values of I' and KN can be computed

directly from (4.1). The positions of the centers of gravity of the
bombs dropped at White Sands differed by about 0.1 calibers from those
of the standard bombs for which the Cornell data were computed. Hence,
equations (4.1) mst be multiplied by the ratio of the c.g. distances.
Table 2 is a comparison of our results with the adjusted Cre.1 results
for Mach number 0.6. The superscripts o and c indicate our results and
the adjusted Cornell results respectively.

Table 2

Drop No. 3 4 2 5

LA 2.70 1.72 1.23 1.14
c2.40 2.42 1.25 1.24

o .7l -- 1.51 3.20

LA 1.17 1.17 1.52 1.52

From the agreement between the results of Drop 2 and those of the Cornell
data it can not be concluded that the scale effect is negligible for
this bomb, even though the accelerometer data are quite smooth, because
the sample of good data is too smll.

-- onclusinm,. - Our reA1t indicate that this uetho of gettia aerody-
naic data Is accurate and practical if the following Improvements can
be made:

(a) The electrical system can be made to give a smooth record of
the accelerations, with fairly well-known limits of error. 7his is the
most important.
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(b) The drag esuruments can be made with two or more accelero-
meters of different rangs., to obtain small relative errors with low
drag.

(o) Accurate meteorological data can be given near the time of the
drop.

If K1, K' etc., are wanted for Mach nubers much higher than that

of release, it miq be necessary to excite oscillations late in the flight
by some device.

J. CONIAN

A. S. GALBRAITH

J. V. LIS

2,3
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APPMIX A O TIM1 23O-LIVIL C5CTION

If the airplane in not accelerating, the portion of the longitudinal
acceleration curve before the time of release should be zero. With this

asmmption, the smoothed a1 vs t curve to the left of the time of release

indicates the true zero level of al, and any needed zero level correction
can be made.

If the indicated zero for a particular transverse acceleration j is
in error, a corrected zero can be found approximately assuming the com-
ponent a a behaves like r. Let aj(s) and (si) be the corrected and

indicated accelerations, respectively, at si. We attempt to determine
k so that

(Al) aj(si) - Qj(si) - kj

Using (1.18) and the eqial spacing of a,, '2' ** sn we have

(A2) - (ujjj 12  jslaa+,

- tui,, 21 -312 aj(si,)/aj +

for i - l, 2, ... , n - 2. Making the approximation

Ui+l2 a UiUi+ 2

in (A2) we obtain

(A3) aj (si)/aj (l+) - aj (i+i)/aj (Bi+ 2)

or using (Al) in (A3),

(AU) [421 (8) - k J j (si.2) - kj - (4tj(si+l) - k 1 2

for i a l, 2, *.., n - 2. The least squaresolution of (A4) for ka is

(An) k - 2 n- 2

where
Pi " a 2(sil) " aj(si)aj(si 2 )

and

a 2a (si, 1 ) - aj(si) - aj(ai+2 ).
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List of Sybols

ai n acceleration as recorded am channel 3, 1 1, o. 7.

S - trmaew acceleration, a2 a a62 , &72

B - transverse moment of inertia of bodb,

Cs a a6 !46 , sign corresponding to that of a.

d a diameter of bomb.

g - acceleration due to gravity.

h - distance from center of gravity of bomb to accelerometers.

k - radius of gyration of bomb

a - mass of bomb.

n - the nmber of intervals defined by successive zeros of 6.

r - resultant acceleration due to yaw = 2 2 + .

a a distance along the trajectory.

j Sn - /sign corresponding to that o a.

t - time.

u - air speed of bomb.

a - (pd2/ 2 )(k 2  .

811 82 a two complex terms of 8 in eqiation (1.8).

* a slope of the trajectory in a vertical plane.

,/ a distance between successive zeros of 8.

p a air density.

- Ps + (real constant).

91, - argament of 8, precession.
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T2 - argument of ro ntation.

- angle of axial rotation of the bomb.

w angular velocity of the longitudinal axis of the bomb.

A dot (*) denotes a derivative with respect to time, and a prime (')
denotes a deritative with respect to arc length.

AERCDYNAMIC OEFICIENTS

D - drag coefficient.

KH - damping moment coefficient.

KL - lift coefficient.

N - restoring moment coefficient.

IN - normal force coefficient.

AUCMYNAMIC FC8CES

D - drag force - KDpd2u2 .

H - damping moment - -K IAU.

L - lift force a- p ~ 2268.

M a restoring moment - -Kmpd 3u28.

N w normal force - 22

The following special symbolism regarding arc length and accelera-
tion is used in Section 2.

1. Capital letters refer to values of the functions at the zeros
of 8.

2. Small letters refer to values of the functions at the extrema
of 6.

3. Script letters refer to observed or unfitted values.

4. Printed letters refer to fitted values.
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SKETCH OF BOMB SHOW/N6 APPROXIMA TE
LOCATIONS AND POSITIONS OFACCELEROMETERS
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